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ABSTRACT 

The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) will 
be responsible for performing ground attitude determination for Gamma Ray 
Observatory (GRO) support. The study reported in this paper provides the 
FDD and the GRO project with ground attitude determination error 
information and illustrates several uses of the Generalized Calibration 
System (GCS). GCS, an institutional software tool in the FDD, automates the 
computation of the expected attitude determination uncertainty that a 
spacecraft will encounter during its mission. The GRO project is 
particularly interested in the uncertainty in the atti tude determination 
using Sun sensors and a magnetometer when both star trackers are 
inoperable. In order to examine the expected attitude errors for GRO, a 
systematic approach was developed including various parametric studies. The 
approach identifies pertinent parameters and combines then to form a matrix 
o f  test runs in GCS. This matrix formed the basis for this study. 
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I : INTRODUCTION 

The Gamma Ray Observatory (GRO) is a 16,000 Kg scientific satellite that 
will be launched in the early part of 1990. The GRO, built by TRW, will 
study gamma ray sources throughout the universe. It will point inertially 
and fly in a circular orbit 400-450 KM from the Earth's surface. The GRO's 
onboard attitude sensors include two Fixed Head Star Trackers (FHST's), the 
NASA standard Inertial Reference Unit (DRIRU-11), an Fine Sun Sensor 
Assembly (FSSA), a Coarse Sun Sensor Assembly (CSSA), and a Three-Axis 
Magnetometer (TAM). The focus of this study will be on the FHST's, the Sun 
sensors, and the TAM. 

This study investigates the attitude determination errors, compared to 
available mission requirements, that are likely to occur during the GRO 
mission. The various sensor combinations examined included two FHST's, a 
FSS and a FHST, FSSa (and TAM), and CSS (and TAM). Requirements do not 
exist for the contingency case involving Sun sensors and magnetometer; the 
study is interested in just how well the Flight Dynamics Division (FDD) can 
determine GRO's attitude under these circumstances. The FSS/FHST and 
FHST/FHST cases three sigma requirements are, respectively, 167.5 arcsec 
and 86.4 arcsec. This study used the Generalized Calibration System (GCS) 
to examine the scenarios in light of several geometrical and statistical 
considerations. GCS, an FDD software tool, was a well suited tool for this 
project because of its ability to produce large quantities o f  numerical 
data. Each sensor set up was also investigated using hand calculations (the 
TRIAD algorithm), which provided intuitive insight not directly seen in the 
numerical GCS results. These results were also compared to available 
mission attitude determination requirements and pre-determined 
capabilities. 

GCS is a software tool that can predict state attitude uncertainties using 
a batch least squares estimator over a specified data span. GCS is generic 
and can be adapted to virtually any three axis stabilized or spinning 
spacecraft. It can model the necessary GRO attitude sensors considered in 
this study (FSS, CSS, TAM, and FHST). GCS is also able to solve for as well 
as "consider" parameters such as sensor a1 ignment, bias, and scale factors. 
For a more detailed discussion of the mathematics that GCS employs, see the 
appendix and reference 1. 

Analysis identified pertinent parameters which addressed the necessary 
geometric and statistical considerations of the GRO mission. Combining 
these parameters created a systematic GCS run work matrix. The identified 
parameters, considered over various sensor combinations, include: time from 
ascending node (spacecraft position in orbit), time of year (Sun position), 
data batch size (number of frames considered), as well as sensor 
misalignment. This study varied the time from ascending node in thirds of 
an orbit (smaller amounts where interesting) and time of year bi-monthly 
(and semi-monthly where necessary). A batch consists of one or more 
"frames", where a frame is a set of measurements all taken at one time. A 
batch size therefore represents the number of frames taken together with, 
in this case, approximately one minute intervals between frames. The batch 
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FIGURE 1: WORK MATRIX 

s ize began w i t h  s ing le  frame so lut ions and increased i n  small amounts up t o  
the p o i n t  where the e r r o r  i s  w i t h i n  the requirement ( o r  w i t h i n  reason where 
no requirement i s  avai lab le) .  Sensor misalignments were var ied from 0 t o  
j u s t  over  the sensor s p e c i f i c a t i o n .  This i n fo rma t ion  establ ished a GCS work 
matr ix  ( f i g  1); the corresponding GCS runs (using the work ma t r i x  as a 
guidel ine) i d e n t i f i e d  i f  and when, w i t h  respect t o  the above parameters, 
the spacecraft could keep t o  the a t t i t u d e  determination requirements. 

Simple hand ca l cu la t i ons  using the TRIAD algor i thm ( r e f  2) performed on 
each sensor combination scenario provided a comparison w i t h  and check 
against the r e s u l t s  from GCS. Certain r e s u l t s  from the GCS runs can be 
explained and t rus ted  i n  l i g h t  o f  the hand computations. 

The main ob jec t i ve  o f  t h i s  p ro jec t  centers on the GRO expected ground 
a t t i  tude determination e r ro rs  assuming both s t a r  t rackers are 
mal funct ion ing , therefore assuming a sun/magnetometer sol u t i  on. For 
compari son and an ove ra l l  view, nominal scenari os ( i ncorporat i ng the FHST) 
are a lso invest igated. Results from t h i s  study are presented below, 
contingency cases f i r s t  fol lowed by the nominal cases. The r e s u l t s  are 
discussed i n  l i g h t  o f  the GCS f ind ings along w i t h  hand ca l cu la t i ons  using 
the TRIAD algori thm. 
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11: Attitude Determination Using Fine Sun Sensor and Magnetometer 

2.1:Fine Sun Sensor/Magnetometer Configuration 

All cases use a 3-2-1 Euler rotation sequence to define the spacecraft 
attitude. During normal operations, GRO employs at least one FHST for 
attitude determination. Since the FSS/TAM case is a contingency case, a 
strictly Sun pointing attitude was assumed which is the nominal backup 
control mode. Setting up the necessary sensors for the GCS study required 
modelinq GRO's two Fine Sun Sensors as two GCS "Coarse Sun Sensors" (see 
the appendix), and modeling a TAM. The GCS CSS assumes the boresight to be 
along the sensor X axis. In order to give the appropriate alignment for 
GRO's sensors, the three alignment Euler angles (aligning the sensors 
relative to the spacecraft) used for the two Sun sensors and the TAM are, 
in degrees ( Z , Y , X ) :  

CSS1: (0,-60,O) css2: (0,2,0) TAM:(180,0,0) 

Note that in Sun pointing mode, the Sun is only visible to CSS2. 
Since this sensor points roughly in the t X  (roll) direction, it 
provides primarily pitch and yaw information and poor roll 
information. 

The scale factors and bias for the Sun sensor measurements are assumed to 
be 1 and 0 respectively as this study expects these calibration constants 
to be known. The sensor alignment uncertainty is however considered later. 
Similarly, the TAM bias vector is also assumed to be 0, initially. 

The observation uncertainty for the Sun sensors is 0.022 degrees (ref 3 and 
4). This study used 0.4 milligauss as the observation uncertainty for the 
TAM (ref 3 and 4). These values represent one sigma uncertainty. 

Following the work matrix described above, the GRO attitude uncertainties 
were examined in light of several parameters; considering Sun position, 
spacecraft position in orbit, batch size, and sensor alignment uncertainty. 

Case 1: Variation of Attitude Uncertainty with Batch Size 

This case considers several positions in orbit and times of year as the 
batch size varies. Varying the uncertainty over batch size for different 
positions in orbit showed that the uncertainty in the attitude estimation 
rapidly became uniform in pitch and yaw, and wavered only slightly in roll 
(fig 3). The only exception occurs during Sun sensor occultation, which 
appears at a different place in each run. During this occultation, the 
pitch and yaw solution does not improve, therefore creating a flat area in 
the graph which consequently moves with the time of the occultation. The 
single frame uncertainties in pitch and yaw are roughly equal to the 
uncertainty in the Sun sensor. This is not surprising since these sensors 
have a higher degree of accuracy than the magnetometer and work to 
determine the attitude in these directions. 
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Unfortunately, these results take into account only the random errors for 
the magnetometer but neglect systematic errors, particularly in the 
accuracy in the knowledge of the reference magnetic field. Using results 
obtained for the change in the magnetic field from 1965 to 1975 (ref 5), 
and considering that the magnetic field is well determined for 1980, (ref 
5), the uncertainty of the field for 1990 can be inferred (ref 5). At the 
GRO altitude of 450 Km, this uncertainty has a one sigma value of 1.8 
milligauss. 

The incorporation o f  the additional magnetic field uncertainty requires 
careful consideration. Including the uncertainty simply as a bias consider 
parameter, and leaving the TAM measurement uncertainty unchanged is not 
satisfactory. GCS assumes that the influence of a measurement estimate is 
weighted inversely to the measurement’s uncertainty (see appendix ) ,  
creating adverse results in pitch and yaw. Maintaining the measurement 
uncertainty o f  0.4 milligauss for the TAM means that these measurements are 
weighted almost half as heavily as the FSS information. 
bigger and bigger (more and more measurements included) the solution does 
not improve as it should but instead gets much worse in parts. Yet, in 
these directions attitude should be well defined in areas where Sun data is 

As the batch gets 
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available. The deterioration of the solution exists simply because of the 
heavy weighting of the increasing amount of poor TAM data. 
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this in GCS, the TAM measurement uncertainty can be adjusted to include the 
magnetic field uncertainty. The root-sum-square o f  the nominal uncertainty 
of 0.4 milligauss and the additional uncertainty of 1.8 milligauss produces 
an effective uncertainty of 1.84 milligauss. This results in the proper 
measurement weighting, but causes GCS to overestimate the intrinsic 
measurement uncertainty. 
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The adjusted TAM uncertainty exhibits good results in pitch and yaw (fig 4a 
and 4c). Note that during Sun occultation, when there is no Sun vector 
measurement, the poor magnetometer data does cause the solution to worsen. 
The new TAM uncertainty also gives a fair indication of.what occurs in roll 
(fig 4b), especially as the batch size, and consequently the number of 
measurements, increases. Using the adjusted uncertainty in this manner 
actually creates an upper bound to the attitude uncertainty, and as the 
batch size increases, the bound converges upon the actual attitude 
accuracy. Figure 4b shows that the roll uncertainty is converging to 0.28 
degrees which then implies that the minimum attitude uncertainty in roll is 
0.28 degrees (one sigma). Comparing this to the pitch and roll results show 
that the roll uncertainty is by far the dominant component of the overall 
atti tude uncertainty. 

Case 2 : Variation of Attitude Uncertainty with Time of Year 

FIGURE 4a. 
PITCH UNCERTAINTY vs BATCH LENGTH 
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In each of pitch, roll, and yaw the single frame solution is accurate to 
better than 0.1 degrees assuming that the Sun sensors receive data. In 
fact, pitch and yaw can be determined to 0.022 (the accuracy of the Sun 
sensors) single frame. After only two measurements, roll can be determined 
roughly as well without Sun as the single frame with Sun. Roll can be 
determined with Sun better than 0.07 degrees. Two frames in pitch and yaw 
yield 0.015 degrees uncertainty. The accuracy steadily increases in each 
direction to better than 0.01 degrees after 60 frames (or roughly an hour 
or 2/3 of an orbit in this case) with or without Sun coverage. 

Again, however, the systematic errors thpt the magnetometer encounter need 
to be considered. 
the weighting) as in Case 1, the results become more realistic. Because of 
the low weighting ofthe TAM information the pitch and yaw results remain 
virtually the same as without the systematic errors except in the smaller 
batches when there is no Sun coverage and the attitude error is 
exceptionally poor. The results improve as the batch size increases and Sun 
data is available in every batch - batches bigger than 30 minutes. However, 
the systematic error contributes several things to roll results. The 
results shift upward to give an, initial uncertainty for the single frame 

By including the error in the uncertainty (to correct 
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solution of roughly 0.5 degrees. The error decreases slightly as the batch 
size increases, but not as significantly as when not considering the 
systematic error. One last impact of this new error on roll results is that 
it effectively puts a floor on the accuracy of 0.28 degrees, just as seen 
in case one. 

Case 3 : Variation of Single Frame Attitude Uncertainty with Orbit Position 

The single frame pitch and yaw uncertainties changed very little through 
the course of an orbit (except when there is earth occultation of the Sun 
and the uncertainty becomes infinite) and the course o f  the year. The pitch 
and yaw show 0.022 degrees uncertainty consistently, dependent only on the 
Sun sensor uncertainty. 

However, the roll uncertainty (fig 6) varies with changes in the Sun and 
spacecraft position, and consequently the change in the angle between the 
Sun vector and the magnetic field vector. These results show that roll can 
be determined to 0.13 degrees at worst and about 0.055 degrees at best. 
When including the systematic error in the TAM, the results behave 
similarly but indicate larger uncertainties. The uncertainties are scaled 
upward, with the best results approximately 0.3 degrees and the worst 
roughly 0.4 degrees. 
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Case 4 : Effect of Alignment Uncertainty 

Combinations of several of the previous cases became benchmark runs to 
consider the effect of a1 ignment uncertainty. Variation from previous cases 
was on the order of IO2 degrees, roughly the order of the specification for 
the sensor three sigma misalignments. In general, this additional 
uncertainty is not of great concern. 

2.2: Deterministic Attitude Estimate Study 

For this contingency scenario using only a single FSS and a TAM, it is 
assumed that the GRO spacecraft is in Sun pointing mode. In configuring a 
TRIAD analysis, the FSS boresight,which GCS requires to be the X-axis (see 
appendix .), therefore points almost directly at the Sun. Using this 
information, the general case of the FSS/TAM can be configured in two unit 
vectors (ref 7): 

A 
Where 

!;=the magnetic field vector observed from the TAM 

The TRIAD algorithm is a deterministic method for computing the 
attitude from two vector measurements (ref 2). Using the TRIAD 
algorithm, it can be shown that the x,y,z (roll, pitch, yaw) 
attitude covariance is: 

=the Sun unit vector observed from the Sun sensor 

012tan Y cos v 612 0 I G12tanY sin v 0 01 
where: ‘Y =the angle between and $2 

w=90 degrees - y 
G1=the Sun sensor measurement uncertainty 
d2=the TAM measurement uncertainty 

From P, roll is the only direction that gamma effects, and only cfl 
contributes to pitch and yaw. The single frame GCS results confirm this. 

Case 3 shows how the single frame solution changes around an orbit. Figure 
6 displays the change in roll, the only direction affected by the changing 
gamma. Assuming the magnetic field model is roughly a dipole, the roll 
accuracy should not change much over the course of the GRO’s low 28.5 

I degrees orbit. The GCS results, varying only 0.1 degrees around the 
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orbit, confirm this. However, clear variations can be seen in the 
GCS results. Choosing the same position in orbit, different times 
of year yield different uncertainties. At 65 seconds from 
ascending node (roughly 2/3 of an orbit) for example, on January 
1 in that position the uncertainty is high and on March 1 it is 
relatively low. The TRIAD result confirms this: Figure 7 shows 
that T i s  larqer on March 1 than on Januarv 1, and the formula 
for P indicates that this will yield a smaller roll uncertainty. 

JANUARY 1 MARCH 1 

FIGURE 7 

3.2: Coarse Sun Sensor/Magnetometer Configuration 

Spacecraft and Sensor Assumptions 

Benchmark cases were run for a coarse Sun sensor and magnetometer scenario 
paralleling the FSS/TAM study (section 3.1). The GRO CSS’s are all in the 
same plane, and in Sun pointing mode this plane is perpendicular to the 
spacecraft X axis. The four CSS measurements are combined in pairs to 
produce two angular Sun measurements relative to an effective boresight 
along the X axis. This may be modeled using a single GCS Sun sensor model 
aligned with the boresight along the X axis : 

css : ( O , O , O )  

The effective uncertainty for the GCS model is then set to 0.707 (see 
appendix) times the actual analog CSS uncertainty. The actual CSS 
uncertainty is 0.33 degrees (one sigma). The results for each of 
the cases run for FSS/TAM scenario turned out to follow the 
results of the cases involving the FSS/TAM. Each case gave 
similar results qualitatively to the FSS scenario. The GRO CSS is 
much less accurate than the GRO FSS which results in a 
consistently less accurate solution. 

When only considering the random error in the magnetometer model, the 
attitude solution is as good as 0.1 degrees in pitch and yaw and 0.25 
degrees in roll after more than 20 frames of data. When including the 
systematic error, as in the case of the FSS, the pitch and yaw results 
remain unchanged. However, roll can only be determined to between 0.6 and 
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0.7 degrees single frame and never better than 0.5 degrees as the batch 
size increases (one sigma). 

The similarities in the results between the FSS and the CSS case are 
reasonable in that they both represent one (effective) sun sensor 
measurement, intuitively they should only differ by a scale factor. 

111: Attitude Determination Using Star Trackers 

3.1  : Star Tracker/Sun Sensor Configuration 

For completeness and comparison purposes, this study also includes normal 
operation scenarios. During normal operations, the GRO is inertially 
pointing. A specific position in orbit, time of year, and proper FSS and 
FHST were selected to provide sufficient sensor coverage. The FHST was 
aligned and its measurement uncertainty set according to spacecraft and 
sensor specifications. 

Results of benchmark runs (similar to those made for the contingency 
cases) show that GCS predicts that the spacecraft will be able to meet 
ground attitude requirements. Assuming some sensor coverage, an accuracy of 
better than 0.005 degrees one sigma can be achieved in each direction with 
only two or three frames of results. The three sigma requirement is 167.5 
arcsec per axis which converts to roughly 0.047 degrees; the one sigma 
results obtained show that the attitude can be determined to 0.015 degrees 
three sigma with only a few measurements - well within the requirement. 

The TRIAD calculations employed in the FSS/TAM scenario can be examined in 
a similar fashion for the FSS/FHST case. Because the spacecraft is no 
longer Sun pointing, the TRIAD set up must be adjusted. However the 
spacecraft can be simply assumed to be star pointing instead of Sun 
pointing. Because the FHST is the more agcurate of the two sensors, it 
should be the first of the two vectors (W1 in section 2 . 2 ) .  So again, only 
roll will be effected by the uncertainty of both sensors, where pitch and 
yaw will be determined only by the FHST. The angle separating the two 
measurement vectors is small at roughly 135 degrees because of the relative 
alignment of the sensors and their fields of view. This checks out in the 
GCS results in that pitch and yaw show similar results where roll appears 
sl ightly worse. 

3.2: Two Star Tracker Configuration 

Using a setup for two FHSTs as prescribed by sensor and spacecraft 
specifications, benchmark cases were again examined similar to the study 
done for the FSS/FHST scenario. Sensor coverage is not so much a factor 
(except for Earth occultation) so virtually any attitude and time suffices 
for the study. 

Results of the benchmark runs again show favorable results. Single frame 
solutions are as good as 0.055 in pitch and roll and 0.0035 in yaw. After 
roughly five frames o f  measurements, pitch and roll are known to 0.025 
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degrees and yaw to 0.002 degrees one sigma. After a short period of 
receiving data in both sensors, attitude can be determined to better than 
0.005 degrees in pitch and roll and 0.001 in yaw. These latter results - 
assuming a small amount (one/two frames) of data in both sensors - compare 
well with the requirement. The three sigma requirement for two FHSTs is 
86.4 arcsec per axis. Converting the GCS results, when there is data from 
at least one sensor, attitude can be determined to at best 54 arcsec per 
axis (yaw can be determined to 11 arcsec) three sigma. 

IV: Conclusions 

The GCS study for the contingency FSS/TAM scenario investigated in this 
paper shows that pitch and yaw can be determined quite accurately without 
the use of FHSTs. The three sigma result in these directions is 0.066 
degrees for a single frame solution. Increasing the batch size does improve 
the solution, when the Sun is visible to the Sun sensors. Over a large 
batch of 60 frames (measurements a minute apart) or more, the three sigma 
pitch and yaw uncertainty improves to better than 0.009 degrees. Including 
geometric considerations does not alter the pitch and yaw results. As long 
as the Sun sensor is receiving data and/or the batch spans the eclipse, 
these results are valid for any time of the year or position in orbit. 
Although small misalignment uncertainties do not affect the results 
significantly, a more detailed study with larger variations outside the GRO 
specification could be useful. 

Roll cannot be determined as well as pitch and yaw using FSS/TAM in Sun 
pointing mode, it can still be determined to a reasonable uncertainty. 
Again, geometric considerations did not change results dramatically; 
section 2 notes subtle changes through position in orbit and time of year. 
With careful handling of systematic TAM errors, a single frame solution 
yields a three sigma uncertainty of approximately 1 degree. Over a large 
batch, the three sigma uncertainty approaches 0.75 degree. 

The results for CSS/TAM parallel the FSS/TAM scenario while having 
consistently higher uncertainty in each direction. When examining a batch 
of 20 frames or more, the three sigma pitch and yaw uncertainty is 0.3 
degrees. In roll, the three sigma uncertainty including only random errors 
is 0.75 degrees. Including systematic errors, the roll single frame 
solution can only be determined to between 1.8 and 2.1 degrees three sigma. 
Over a large batch, the three sigma uncertainty in roll including 
systematic errors remains over 1.5 degrees. 

Overall, The GRO attitude can be determined to roughly 0.75 degrees (three 
sigma) using FSS/TAM and to 1.5 degrees (three sigma) using CSS/TAM. It has 
been shown that virtually all of this error is in roll; the direction of 
the X axis can therefore be determined quite well but the roll rotation 
about this axis is difficult to determine. 

GCS proved to be an excellent software tool to examine the GRO ground 
attitude error. GCS provided the flexibility to perform several 
different parametric studies. GCS also generated a large quantity of 
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numerical results necessary for attitude error analysis. With the 
addition of simple hand calculations, GCS results furnished 
insight into the existence and growth of attitude errors. 

Append i x 

This appendix examines the mathematics used in GCS, including overview 
descriptions of the filter GCS assumes and the covariance analysis it 
employs. This section also describes the GCS consider parameter and its 
uses. GCS spacecraft sensor modeling is discussed as well. This section 
addresses how the Atti tude Ground Support System determines atti tude 
operationally is addressed in light of the GCS system. 

A.l Batch Least Squares Filter, Loss Function, State Estimate, and 
Covariance Analysis 

The methods used in GCS to calculate attitude determination errors are much 
like those used to determine attitude near real time for GRO operationally. 
Both systems assume a batch least squares filter, and results can therefore 
be readily compared; even though the real time attitude determination 
system uses a different method (QUEST), results can still be compared 
qualitatively to GCS output. Although GCS does not actually model the 
filter that the fine attitude determination system does- a batch least 
squares filter (GCS does not use a filter at all, it never actually 
estimates the state parameters using real data) - the manner in which the 
GCS covariance analysis predicts the attitude accuracy does involve using 
selected observations from a batch least squares filter. So in order to 
clearly describe the covariance analysis performed in GCS, a brief 
discussion of the batch least squares filter is useful. 

In general, the batch least squares filter, in computing the state vector 
value that best fits some data, works to minimize the residual error in the 
attitude estimate. Simply put, minimizing the weighted sum of the squares 
(of the components) of the residual error results in the best fit. The 
resulting loss function (to be minimized) is therefore: 

where : y=real measurements made up of: 
y=y'c (T ) t? 1 4 v,= comDu ed Dredicted sensor measurements 

" L  as'a function of the true state (G) 
4 v= random measurement noise 

therefore @-y]=Py= residual error 
W=wei ght i ng matri x 

The weighting matrix used in GCS is the inverse of the measurement 
covariance matrix, M, which is a diagonal matrix whose diagonal elements 
are the expected standard deviation in the uncertainty of its corresponding 
measurement. So an observation with a high uncertainty gets little weight. 
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It is important to note that since M is a diagonal matrix, with zeros off 
the diagonal, GCS assumes there is no correlation between the observations. 
Assuming that the observations have a gaussian noise distribution and since 
these observations are weighted by W, the inverse of the measurement 
covariance matrix, this least squares fit turns out to be the Maximum 
Likelihood Estimate (MLE). 

Lastly, GCS includes, in its filter model, some a priori knowledge o f  the 
state vector. This a priori knowledge is expressed in the form of an 
initiaLstate covariance matrix and is the expectation value of Fo?oT 1, 
where xo is the a priori estimate: 

0 o..........o 
u2 0 0 

U1 .......... 
(A- 2 1 

0 
PO = E [?O?oT] = 1 

o....................... 

Each of the diagonal elements in P 
- representing the uncertainty in ?he corresponding state parameter. 
there is no correlation in the initial state uncertainties as seen in the 
off diagonal zeros. So including this a priori knowledge, q, in the loss 
function to be minimized, it reads: 

is the square of the standard deviation 
Again 

J=1/2(~-y~)~ 3 - Q  W(y-yc) r - b  t 1/2(~-~0) + +  Po- 1 (x-XO) -)+ (A-3)  

To minimize J ,  the partial derivatives with respect to each state element 
are set equal to zero, creating simultaneous equations corresponding to 
each of the undetermined state vectors: 

(A-4) 

These equations areasolved iteratively and are made linear about the 
previous estimate, Xk. Begin with the a priori state estimate: 

4 3 - B  4- t  Yc= Yc(xk) t H(x-xk) 

Where: H = matrix of partials evaluated at 
(A- 5 1 

The new state estimate can therefore, using equation ( A - 5 )  in equation (A-  
4 ) ,  be expressed as: 

This equation is iterated until convergence is achieved. The expected a 
uncertainty in the estimate can be derived in the following manner. If e is 
the error representing the difference in the computed state from any given 
state determination (using real data that contains nois ), then the 
covariance matrix P represents the expected value of $8. Using equation 
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(A-6) and making the new state estimate, the state can be adjusted until 
convergence is reached: 

A 

(A-7) Po- 1 3 4  (x-xgt (2-s) )=HTW[7-gc(?) tH (;-?)I 

where:z=the true state 
X=the converged estimate 

- * a h  Letting 7 be the resulting noise in the measurements, e=x-? be the 
difference between the true state and the converged estimate, and using 
equation (A-7), it can be shown that: 

(A-8) P = E($gT) = (Po T T  +H WH)-l 

GCS uses this covariance equation. The final state uncertainty results that 
come from GCS are the standard deviations acquired by taking the square 
roots of the diagonal elements of the final covariance matrix. 

A . 2  Consider Parameters 

GCS gives the user the ability to incorporate parameters that are not 
necessarily estimated (or "solved for"), yet whose uncertainties could 
still effect state uncertainties (in addition to any measurement noise 
effect), hence the name "consider parameter." Any parameter that GCS 
employs as a possible state parameter can instead be used as a consider 
parameter. 

Let TC represent the consider parameters. Also let Hc be the matrix 
containing the partials of the measurements with respecLto the consider 
parameter. The effect of the consider parameter error, e,, on a first order 
estimate of the state measurement error can be shown : 

(A-9) 

Then by adding the effect of  the consider parameter to the effect of the 
noise the adjusted state (which is being solved for) can be computed: 

(A-10) 

where: %=a priori state error 
-J=noi se 

Taking the expected value of the product of -T ee , it can be shown that : 

P=E[ -T ee ]=PstPsQcPcQcTPS (A-11) 

where: Ps=( tHTWH)-' for compactness 
Qc=H@H Tor compactness 
PC=E[Z!& ]=the consider parameter covariance matrix, 

a diaaona! matrix with the diagonal elements 
representing the expected uncertainty in the 
corresponding consider parameter 
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PsQcPCQ~Ps therefore represents the consider parameter contribution to the 
covariance. It is this equation (A-11) that GCS uses to calculate the state 
covariance assuming the existence of consider parameter effects. It should 
also be noted that the contribution from each of the consider parameters is 
independent (since the covariance matrix in (A-11) is diagonal), and that 
GCS computes the separate as well as the total contribution. 

A.3 Sensor Modeling in GCS- GRO Specific 

This subsection describes how GCS models the sensors on the GRO, including 
the Fixed Head Star Tracker (FHST)j, the Fine Sun Sensor (FSS), the Coarse 
Sun Sensor (CSS), and the Three Axis Magnetometer (TAM). GCS models other 
sensors (including those for spinning spacecraft) whose models are not 
considered here. For the partial derivatives pertaining to these sensor 
models in GCS, see appendix I of reference 1. 

A.3.1 Fixed Head Star Trackers 

GCS models two FHST's either simultaneously or separately (and/or in 
conjunction with other sensor(s)). GCS defines the FHST coordinate system 
such that X s  is along the sensor boresight, Y 
the tV measurement, and Zs is positioned so tgat X,,Y ,Zs form a right 
handed coordinate system. The horizontal and vertica7 coordinates of the 
star locations in the FHST field of view, YH and Yv respectively, are 
defined in GCS: 

is along the direction of 

where : H = tan:i[FSZ/FSX] 
V =-tan [Fsy/Fsx] 

(A-14) 
(A-15) 

(Fsx,Fsy,Fsz) =Fs, the unit star vector in the 'FHST 
sensor coordinate system. 

A The angle H rotates from the PS-? plan to the 9s-Q Rlane about the ys 
axis. The V angle rotates from the 9s-e plane to the ZS-G plane about 9s. 
The state parameters are: 

Yh'Yh(P,r,Y, @ 1, 42, @ 3,SH,bH) ( A  16) 
Y~=Y~(P,~,Y, $1, $2,  (I 3,Sv,bv) 

4 1 , $ 2 , +  3=sensor a1 ignment parameters 
SH,SV=sensor scale factors 
bH, bv=sensor biases 

(A  17) 
where p,r,y = pitch, roll, and yaw 

A.4.2 Fine Sun Sensor 

Although GCS has a Fine Sun Sensor model, the GCS Coarse Sun Sensor more 
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I closely models the GRO FSS uncertainties in that the GCS CSS is a digital 
sensor like GRO’s FSS and the GCS CSS presents the simpler model (which is 
sufficient to model GRO’s FSS) .  GCS can model up to three CSS’s 
simultaneously; when modeling GRO, only two are necessary. The sensor 
detects the Sun’s direction (expressed as a unit vector in CSS coordinates, 
which can be transformed to the unit Sun vector, SI in G C I  coordinates): 

where: [ M I ,  [ B ] ,  [A] = matrix coordinate transforms 

in terms o f  a n a  angle and a f l  angle (fig 8) .  GCS corrects these 
measurements using calibratiori coefficients, A1.,A2,B1,B2: 

OC= tan::(SSy/SSX) (A-21) 
B = tan (Ssz/Ssx) (A-22) 

This GCS model assumes that the CSS boresight is along the XS-axis,d is 
the projected sun angle in the X s - Y s  plane, and A’is the projected sun 
angle in the Xs-Zs plane. The state parameters for the GCS CSS are: 

~a = ~4 (P,~,Y, 6 1, + 2 , 4 3 , ~ 1 , ~ 2 )  (A-23) 
N p  = Np (P,~,Y, 61, @ 3 , B 1 , B 2 )  (A-24) 

where : p,r,y = attitude parameters that define [B ]  
4 , b,=CSS alignment parameters (defining [ M I )  

A1, B 1  , i 2 ,  B2 =sensor cal i brati on parameters 

1- - ;‘\- - - 
I \ 

%= I ‘ P I 

0 +--- --- - -- 
0 0’ ’ / ’  0 

‘ I  
/ 0 

) Y  

FIGURE 8. DIRECTION OF SUN VECTOR IN CBS 
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A.4.3 Coarse Sun Sensor 

GRO's CSS i s  an analog sensor which i s  n o t  modeled by GCS. However,a scale 
f a c t o r  was determined so t h a t  t h e  GCS CSS model, descr ibed i n  A.4.2, cou ld  
be used. It can be shown tha t :  

(A-25) 

where dl= u n c e r t a i n t y  f o r  t he  GRO CSS 
6 2 =  u n c e r t a i n t y  f o r  t he  GCS CSS 

A.4.4 Three Axis  Magnetometer 

I n  GCS t h e  TAM measurement vec to r  i n  the  sensor frame i s  i n  t h e  d i r e c t i o n  
o f  t h e  geomagnetic vec tor :  

(A-25a) 
(A-25b) 

where M],[B],[A] = t rans format ion  mat r ices  (see r e f  1, 3.3) 
kI=geomagnet i c f i e!d i n  G C I  coord inates 
fl -1) re fe rence coord inates -?R- 
b=bi as 

GCS uses the  magnetic f i e l d  model from the  subrout ine MAGFLD ( r e f  5) .  The 
s t a t e  parameters f o r  t h e  GCS TAM are:  

Y=Y(p7r7y, '1, & 2 ?  4393) (A-26) 

~$1, &$, $3=alignment parameters d e f i n i n g  [ M I  
b=cons an t  b i a s  vec to r  

where: p , r , y=a t t i t ude  parameters d e f i n i n g  [B] 
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